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Neural Prediction of Communication-Relevant Outcomes

Emily B. Falk, Christopher N. Cascio, and Jason C. Coronel
University of Pennsylvania

Understanding the mechanisms of effective communication may be advanced by knowledge from
social and cognitive neuroscience. We build on prior brain research that mapped mental processes,
and describe a brain-as-predictor approach that encompasses studies that treat measures of brain
activity in response to communication relevant tasks as: 1) mediators between communication rele-
vant stimuli and outcomes, 2) moderators of the relationship between communication relevant stimuli
and outcomes or 3) direct predictors of communication relevant outcomes. In this article, we give a
detailed description of the brain-as-predictor approach and provide a guide and checklist for inter-
ested authors, reviewers and editors. We discuss how the approach can provide theoretical insights
and advance practical applications in communication research. Given its potential for advancing the-
ory and practice, we argue that the brain-as-predictor approach can complement other communication
research methods and serve as a valuable addition to the communication science toolbox.

From movie trailers to political ads to health campaigns, companies, governments and nonprofits
spend hundreds of billions of dollars each year in the United States alone to produce and dis-
tribute media aimed at influencing behavior (“U.S. Total Media Ad Spend Inches Up,” 2013).
Yet the effects of campaigns are highly variable and small on average (Sethuraman, Tellis, &
Briesch, 2011). Among many factors, such variability may arise from the fact that mental pro-
cesses that lead to influence are not directly observable. Furthermore, individuals are often limited
in the extent to which they are willing or able to report accurately on the processes underlying
their thoughts, decisions, and causes driving their behaviors (Dijksterhuis, 2004; Fazio & Olson,
2003; Nisbett & Wilson, 1977; Paulhus, 1986). A growing body of research suggests that pro-
cesses that precede behavior change are nonetheless represented in the brain. As such, some of
these processes may be captured using neuroimaging methods, and used to predict behavioral
outcomes (Berkman & Falk, 2013). This brain-as-predictor approach encompasses studies that
treat measures of brain activity in response to message exposure or other communication relevant
tasks as: 1) mediators between communication relevant stimuli and outcomes, 2) moderators of
the relationship between communication relevant stimuli and outcomes, or 3) direct predictors
of communication relevant outcomes. As will be described in greater detail below, the brain-
as-predictor approach is a relatively new approach with growing bodies of research underway.
Below, we will describe initial evidence for its value and how the approach can provide both
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NEURAL PREDICTION OF COMMUNICATION OUTCOMES 31

added predictive capacity in parallel with other measurement tools, as well as insights regarding
the mechanisms underpinning behavior change. We will provide an overview of what is currently
known and where the field is going.

The approach builds on advances in neuroimaging technology that have made it possible to
examine mental processes that unfold throughout the brain as participants complete a wide range
of tasks. Neuroimaging methodologies (e.g., fMRI, EEG/ERPs, fNIRS) allow researchers to
examine responses to relevant stimuli (e.g., messages, cognitive tasks) in real time during stim-
ulus exposure or task execution. Furthermore, neuroimaging technologies collect data without
the need for conscious introspection (as would be required of self-report instruments). Finally
neuroimaging can measure implicit processing without the need to impose competing cogni-
tive tasks to remove the ability for conscious reflection among participants (e.g., through time
pressure or other cognitive load, as would be desired for many implicit measures, but would
then fundamentally change the nature of the task being completed). Using neuroimaging tech-
nology, scientists have identified constellations of neural activity that are associated with many
basic social, affective and cognitive functions (Ariely & Berns, 2010; Cabeza & Nyberg, 2000;
Lieberman, 2010; Loewenstein, Rick, & Cohen, 2008; Sanfey, Loewenstein, & Mcclure, 2006).
In combination with other research at the intersection of communication and biology (Beatty,
McCroskey, & Pence, 2009; Boren & Veksler, 2011) these insights can serve as a foundation for
hypothesis generation and testing.

We argue that communication scholars can leverage this critical mass of studies in social and
cognitive neuroscience and neuroeconomics to test relationships between communication, the
brain, and behavior, and that this in turn can inform both theory and practice. We focus largely on
examples from fMRI, but ultimately the brain-as-predictor approach can leverage a wide range of
neuroimaging techniques (e.g., fMRI, structural MRI, DTI, EEG/EPRs, fNIRS) and can also be
applied in parallel with other biological paradigms employed by communication scholars.1 The
combination of multiple imaging modalities and psychophysiological data promises to provide
a more comprehensive account of communication effects and processes. In what follows, we
review the brain-as-predictor approach (Berkman & Falk, 2013), provide a step-by-step guide to
the approach and then offer selected case examples illustrating practical and theoretical advances
made possible by the approach.

WHAT IS THE BRAIN-AS-PREDICTOR APPROACH?

In contrast to neuroimaging studies that manipulate psychological processes and observe neu-
ral activity as an outcome, the brain-as-predictor approach specifies neural variables (e.g., brain
activity, connectivity, structure) as mediators, moderators or direct predictors of key psycholog-
ical, psychophysiological or behavioral outcomes (Berkman & Falk, 2013; Figure 1). In other
words, whereas past research has mapped the location and time course of neural activity sup-
porting specific psychological processes, the brain-as-predictor approach leverages these insights

1Comprehensive review of the mechanics of different neuroimaging technologies is beyond the scope of this
review (interested readers are referred to Harmon-Jones & Beer, 2009), as is a broader review of biological metrics
in communication science (interested readers are referred to Boren & Veksler, 2011; Potter & Bolls, 2011).
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32 E. B. FALK ET AL.

FIGURE 1 The brain-as-predictor approach, reproduced from Berkman
and Falk, 2013. Investigations in social, cognitive and affective
neuroscience have traditionally manipulated psychological processes and
mapped their location in the brain (treating the brain as a dependent
measure). Psychologists have also traditionally manipulated psychological
processes and observed their cognitive, behavioral and affective conse-
quences. The brain-as-predictor approach combines what has been learned
in each of these literatures to hypothesize neural processes as indepen-
dent variables that directly predict outcomes beyond the neuroimaging lab.
Note: arrows in this figure indicate conceptual relationships rather than
causation.

to test specific theoretically guided predictions linking neurocognitive processes and subsequent
psychological, physiological and behavioral outcomes (see Figure 1 and How to Apply section).

The ability to identify theoretically relevant neural predictors builds on past decades of
research conducted in cognitive neuroscience (Cabeza & Nyberg, 2000), social neuroscience
(Cacioppo & Berntson, 1992; Cacioppo, 2002; Lieberman, 2010; Ochsner & Lieberman,
2001) and neuroeconomics (Loewenstein et al., 2008; Sanfey et al., 2006). These bodies of
research have manipulated psychological variables in the laboratory and mapped the result-
ing neural activity (see Figure 1). By definition, brain mapping studies treat neural activ-
ity as a dependent measure, examining correlations between psychological processes and
their neural correlates—in lay terms, reporting what “lights up” (a term that neuroscientists
resist).

The brain-as-predictor approach takes a next step by using this accumulated knowledge to
make theoretical predictions that link mental processes captured via brain activity (or individ-
ual differences inferred from brain structure) and use those data as mediators, moderators, or
direct predictors of psychological, physiological, and behavioral outcomes that follow, often
beyond the confines of the laboratory (Berkman & Falk, 2013). In the next section, we describe
how to implement the brain-as-predictor approach and illustrate some common considera-
tions that researchers employing the approach must grapple with through the use of case
examples.
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NEURAL PREDICTION OF COMMUNICATION OUTCOMES 33

HOW TO APPLY THE BRAIN-AS-PREDICTOR APPROACH TO COMMUNICATION
SCIENCE

Berkman and Falk (2013) outlined three steps to implement the brain-as-predictor approach.
Here, we review the three proposed steps, with additional notes of particular relevance to
applications in communication science (Figure 2).

Step One: Specification of Hypotheses and Identification of Neural Variables

The first step in the brain-as-predictor approach requires specification of hypotheses and iden-
tification of neural variables (e.g., functional regions of interest, structural regions of interest,
connectivity patterns between regions) that are most relevant to each hypothesis. This further
requires defining the specific hypothesized role of the neural variable (as a trait or a state mea-
sure; as an independent predictor, mediator, or moderator). The neural variables selected represent
the operationalization of mental processes or individual differences. As noted by Berkman and
Falk (2013), “careful selection [of neural variables] is critical, akin to selecting a behavioral task
or self-report measure to tap a construct. In this sense, the brain-as-predictor approach relies on
the same scientific logic as any other predictive approach in psychology (e.g., predicting behav-
ior change from intention) but with a different independent variable” (p. 48). Neuroimaging data
can have high test-retest reliability (Miller et al., 2009), depending on a number of factors (for
a review, see Berkman, Cunningham, & Lieberman, in press). As with any measure, however,
consideration should be given to the specific measurements being employed and assumptions
pertaining to reliability and validity should be verified.

FIGURE 2 Overview of how to apply the brain-as-predictor approach to
communication science.
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34 E. B. FALK ET AL.

Neural Variables as Moderators

As one example of how neural variables can be selected to operationalize specific cogni-
tive processes, recent work in our laboratory examined how cognitive control and interpersonal
communication variables interact to produce risk-taking in a driving context among adolescent
males (Cascio et al., 2014). Our primary neural variable was activity within brain regions that
have been demonstrated in many cognitive neuroscience studies to support a specific form of
cognitive control—response inhibition. Response inhibition involves overriding an otherwise pre-
potent habit or impulse, and individuals vary in the extent to which they recruit the core set of
brain regions that facilitate successful response inhibition (Cascio et al., 2014). We collected
information about such individual differences during a baseline neuroimaging session in which
participants engaged in a cognitive control task that requires response inhibition. We collected
our primary communication variables and behavioral outcome data in a driving simulator session
that occurred a week following the neuroimaging session. During that session, each participant
drove alone and with a peer (confederate) passenger who subtly communicated risky or cautious
norms before the drive.

We examined how peer norms expressed by confederate passengers (cautious versus risky)
interacted with individual differences in response inhibition activity during the baseline fMRI
cognitive control task to predict risk-taking in the driving context. We found that adolescents
showing stronger activation in brain regions linked to response inhibition demonstrated safer
driving behaviors in the presence of a peer who communicated cautious norms (compared with
solo driving) but not in the presence of a risky peer (compared with solo driving). These data
emphasize the importance of subtly communicated social cues in shaping the use of poten-
tially protective cognitive control resources during decision-making in adolescents (or the role
of neural resources in responding to different types of social situations). Furthermore, from a
practical standpoint, neural activity predicted an additional 10.9–22.8% of the variance in risk
taking behavior in the presence of cautious peers, beyond what was explained by participants’
solo driving behavior, self-reported susceptibility to peer influence, and a number of other covari-
ates. More broadly, this example illustrates how neural variables can be selected to tap a specific
cognitive construct (variation in cognitive control resources), as well as how such a construct can
be treated as a moderator of the relationship between situational/ environmental factors (in this
case the implicit communication of risk versus cautious preferences) and behavioral outcomes.

Neural Variables as Mediators

Neural data can also be treated as a mediator of the relationship between a communica-
tion manipulation and behavioral outcomes at the level of individual behavior and population
level responses to campaigns. For example, although they did not formally test mediation, Chua
and colleagues (2011) hypothesized that tailoring health messages to specific individuals might
increase the extent to which messages were processed as self-relevant, which in turn might predict
message-consistent behavior change. To test this hypothesis, they first identified neural regions,
including medial prefrontal cortex (MPFC), associated with self-related processing using a well-
validated task that compares neural activity during judgments that do or do not require self-related
thought (a “self-related processing localizer task”). Next, they examined neural activity within the
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NEURAL PREDICTION OF COMMUNICATION OUTCOMES 35

“self regions” as participants were exposed to tailored and untailored health messages. Their data
suggest that one way in which tailoring messages drives behavior change is by increasing the
degree of self-related processing (which was greater in response to tailored messages, compared
to untailored messages), which in turn predicts behavior change; in this case, though mediation
was not formally tested, brain activity is conceptually treated as a mediating variable between the
manipulation and outcome.

Likewise, our lab has observed that neural activity in regions of MPFC selected to operational-
ize a similar form of “self-related processing” in response to anti-smoking messages predicts up
to 20% of the variance in participants’ behavior change, beyond that predicted by combinations
of participants’ self-reports of intentions to quit, self-efficacy to quit, ability to relate to the mes-
sages, and risk beliefs, among other measures (Falk et al., 2010, 2011; Cooper et al., in press); we
have argued that increasing neural activity in brain regions implicated in self-related processing
might serve as a mechanism driving behavior change in response to health messages.

These data are suggestive of one mechanism (self-related processing) that might link com-
munication exposure and behavior change. Existing research in this area, however, has largely
been restricted to observational studies that cannot rule out the possibility that communication
exposure is not necessarily causing behavior change. This limitation stems largely from the high
cost of fMRI research, which has limited researchers’ ability to collect between subjects con-
trol groups. In other words, it is possible that the putative self-related processing observed in
response to anti-smoking messages is a proxy for receptivity to the idea of quitting more broadly
and that those smokers who show the greatest response to the anti-smoking messages presented
would have quit or reduced their smoking, even in the absence of intervention. In our lab, we
have attempted to address this threat to validity in several ways; for example, Falk et al. (2011;
introduced above) selected smokers who all had a similar and strong intention to quit smoking;
hence, variability in neural response is not accounted for by different levels of quit intentions.
Cooper et al. (in press) took an additional step by demonstrating that activity within the sub-region
of MPFC localized to be engaged in “self-related processing” was only predictive of behavior
change in response to exposure to anti-smoking media—neural activity in the same brain region
during a task that involved self-reflection outside of the smoking context did not predict behavior
change. Thus, although the data remain correlational and this analysis does not resolve all con-
cerns, Cooper’s results demonstrate that the predictive MPFC response is specific to the target
media stimulus. Finally, in recent work, we have randomly assigned participants to conditions
designed to increase or decrease levels of self-related processing and consequent MPFC activity
during exposure to health messages. This activity, in turn, predicts message consistent behavior
change (Falk et al., in press). Beyond work in our lab, funding agencies and research groups are
increasingly prioritizing sample sizes and study designs that allow for stronger inferences.

Traversing different levels of analysis, research teams have also examined effects of different
message types on neural responses of small groups of participants as predictors of the behav-
ior of larger groups of people. For example, neural responses within MPFC in relatively small
groups of participants have been shown to forecast the population level success of different anti-
smoking messages in driving calls to smoking quit lines (Falk et al., 2012) and generating email
traffic to a quit website (Falk et al., under review). In these studies, neural activity within MPFC
assessed in relatively small groups of people in response to anti-tobacco messages was aggre-
gated to predict population response to those ads. In comparison to the self-report ratings of
the individuals from the smaller groups, neural activity in MPFC added significant predictive
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36 E. B. FALK ET AL.

value in both studies. Similar methods have been used to predict population level sales data for
songs (Berns & Moore, 2012), perceived effectiveness of anti-drug messages (Weber, Huskey,
Mangus, Westcott-Baker, & Turner, in press), and social media response to television content
(Dmochowski et al., 2014). These studies differ markedly from those described above in that
they treat the message (or other communication content) as the unit of analysis, and compare
aggregated neural activity across multiple individuals as predictors of population level behaviors
that presumably result from campaign exposure. This approach suffers from the common lim-
itation described by communication scholars that “isolation of the independent effects of mass
media campaigns is difficult” (Wakefield, Loken & Hornik, 2010, p. 1268); however, the use of
randomized field experiments and increased ability to tightly track behaviors in the context of
digital campaigns can help alleviate some of these limits (for one example, see Falk et al., under
review).

Neural Variables as Direct Predictors of Communication Outcomes

In addition to specifying neural variables as moderators of the effects of communication vari-
ables or mediators of the effects of communication variables on behavioral outcomes, neural
activity can also be conceptualized as direct predictor of communication behaviors. In these cases,
neural activity is often operationalized in terms of individual differences that affect communica-
tion outcomes. For example, in recent work Falk, Morelli and colleagues (2013) hypothesized
that the tendency to engage brain systems associated with considering the mental states of others
might predict more effective retransmission of ideas, which they termed the “idea salesperson
effect.” They found that individual variation in their hypothesized “perspective taking regions”
during exposure to a set of novel ideas was positively associated with the degree to which each
participant was later successful in communicating and recreating his or her own preferences in
another group of participants.

O’Donnell and colleagues (in press) followed up on this work using a brain-as-predictor frame-
work, treating neural activity within the putative perspective taking regions during exposure to
a different set of ideas as a predictor of the extent to which participants used social language in
subsequently retransmitting ideas. The team argues that “our brains are sensitized to social cues,
such as those carried by language, and to promoting social communication.” They suggest that
neural activity in perspective taking regions provides a way to conceptually bridge findings from
communication science, sociolinguistics and neuroscience about how individuals process incom-
ing ideas and subsequently retransmit them to others. As may be clear from this example, even
studies that treat neural activity as direct predictors of communication behavior often rely on an
incoming stimulus to elicit the target neural activity, hence blurring the line between treating the
brain as a mediator or direct predictor.

Specifying Region(s) of Interest

The utility of each of the model types described above hinges on appropriate operationaliza-
tion of constructs, often through selection of neural regions of interest (ROIs). Depending on the
research question and hypotheses it may be most appropriate to select regions of interest in a num-
ber of different ways. As with several of the examples described above (e.g., Cascio et al., 2014;
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NEURAL PREDICTION OF COMMUNICATION OUTCOMES 37

Falk, Morelli et al., 2013), one common approach is to select neural regions anatomically based
on a review of prior literature on the construct(s) of interest. This approach promotes standardiza-
tion across studies to the extent that anatomical regions are well defined. An anatomical atlas can
be employed to define the region of interest. Some major limitations of this approach include that
some regions of interest may not be well defined anatomically and/or may cover large swaths of
cortex that are less specific than would be desired for the brain-as-predictor approach. Related to
the latter point, individual anatomical regions of interest are likely to be relatively unselective for
specific mental processes (i.e., a large anatomical ROI is likely to support multiple mental pro-
cesses). Hence, when using anatomical ROIs, it may be desirable to consider networks of regions
that are known to collectively support specific mental processes (Poldrack, 2006).

A second common approach that addresses some of the limitations noted above is to select
neural regions functionally, identifying neural regions that are associated with a manipulated
psychological process of interest in past work, or within an independent task collected in the
same study. Functional ROIs do not necessarily conform to specific anatomical boundaries (i.e.,
they may cross anatomical boundaries or be restricted to subregions of an anatomically defined
region).

Functional ROIs can be identified using neural regions identified in a prior group of
participants—termed a “test/validate” approach. This is the approach taken by Falk and col-
leagues (2011; described above) to predict smoking behavior change in response to anti-smoking
messages. In a prior study, the team had identified neural regions associated with behavior change
in the context of exposure to messages promoting sunscreen use (Falk et al., 2010). Neural activity
within these same brain regions was then examined as a new group of smokers were exposed to
anti-tobacco messages, and that activity was used to predict changes in individual smoking behav-
ior in the month following exposure (Falk et al., 2011) as well as population level responses to
subgroups of the ads (Falk et al., 2012). A major advantage of the test-validate approach is that, as
the name implies, is provides validation of previously observed brain-behavior relationships. The
approach requires resources to conduct multiple studies or collaboration across research teams.

Another way to identify functional ROIs is to use researcher curated (e.g., Salimi-Khorshidi,
Smith, Keltner, Wager, & Nichols, 2009; Wager, Lindquist, Nichols, Kober, & Van Snellenberg,
2009) or automated (e.g., Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011) meta-analytic
results that combine results from multiple studies of the psychological process of interest to iden-
tify regions of interest. This is the approach taken by Cooper and colleagues (in press). In addition
to the team’s goal to link self-related processing with behavior change (described above), Cooper
and colleagues were also interested in the economic notion of positive valuation in understanding
how people process health messages (Figure 2). They noted that “many studies in the nascent
field of neuroeconomics have demonstrated that an area of the ventral MPFC plays a key role in
representing the personal, or subjective, value of many types of stimuli during decision making.”
They hypothesized that a similar common value signal might also respond to the value of ideas
in health messages, and hence predict behavioral responses to those health messages. To test this
hypothesis, the team built on a meta-analysis of studies that identified brain regions implicated
in computing the value of stimuli ranging from money to material goods to social rewards. They
reasoned that positive valuation of ideas contained in a PSA might make use of the same neural
systems that compute value more generally, which might in turn predict behavior change. To test
this hypothesis, they examined neural activity within a meta-analytically defined valuation region
of interest as smokers were exposed to anti-smoking messages. Consistent with their hypothesis,
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38 E. B. FALK ET AL.

neural activity within this meta-analytically defined value-computation ROI did generalize to pre-
dicting health behavior change. These data are consistent with the idea that assessing and acting
on health messages may make use of a more general mechanism in the brain that computes value
of stimuli with respect to one’s current goals and motivations. One limitation of this approach
is that it requires a substantial number of prior studies. In cases where such a body of literature
exists, however, it can be a very powerful approach allowing researchers not only to define func-
tional ROIs, but also quantitatively assess the likelihood of specific mental functions ascribed to
the ROI (Yarkoni et al., 2011; see also section below on reverse inference).

Functional ROIs can also be identified using an independent task within the same group of
participants (referred to as a “localizer task”; see Saxe et al., 2006). For example, Chua and
colleagues’ (2011) study of anti-smoking messages (described above) is a good example of the
use of a localizer task to identify regions of interest. The research team first used an independent,
well-validated task to identify neural regions that were more active during judgments requiring
self-reflection compared to judgments that did not require self-reflection. They next examined
neural activity within those functionally defined “self” regions as participants were exposed to
quit-smoking messages. Finally, they used the neural activity during the smoking messages in the
localized “self” regions as the primary predictor of later smoking outcomes. Major limitations
of this approach are the increased costs (in terms of scanner time and participant burden). This
approach, however, offers the ability to identify person-specific ROIs that can support somewhat
stronger inferences about the function of selected ROIs, and requires less cumulative data than
the meta-analytic approaches advocated above.

In the context of communication science, some brain-as-predictor hypotheses will pertain
to the relationship between well-mapped cognitive, affective and social processes (e.g., self-
related processing) during communication-relevant tasks (e.g., media exposure) and subsequent
behavioral outcomes (e.g., health or political behaviors). By contrast, some key questions in com-
munication science will build on specific theories or questions that are not well mapped yet in
social and cognitive neuroscience or neuroeconomics. In these cases, brain mapping steps, or the
use of well-thought-through localizer tasks, may still be necessary to identify regions of interest.

Step Two: Data Collection

Once hypotheses have been specified, the second step in the brain-as-predictor approach is data
collection. In this step, relevant neural data (e.g., functional activity during a task, structure of
specific brain regions) are collected within the laboratory and subsequent psychological, phys-
iological, and/or behavioral data are collected, often longitudinally. A review of the resources
needed to collect fMRI data and issues that arise and require attention in communication science
can be found from Weber and colleagues (this volume); resources describing methods and analy-
sis considerations for three potentially useful types of neuroimaging to communication research
(fMRI, ERP, fNIRS) can also be found in the Appendix.

As noted above and covered in more depth elsewhere (e.g., see Harmon-Jones & Beer, 2009),
successful acquisition of brain data carries nonnegligible costs, constraints, and expertise require-
ments that are not specific to the brain-as-predictor approach (see Weber & colleagues, this
volume). Beyond the methodological considerations covered in more general resources (that
focus on brain variables as dependent measures), the brain-as-predictor framework requires not
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NEURAL PREDICTION OF COMMUNICATION OUTCOMES 39

only acquisition of neural data but also further acquisition of subsequent psychological, phys-
iological, or behavioral outcome data. This is one aspect that makes the approach particularly
suited to communication research—communication scholars are adept at identifying, measuring,
and connecting individual level and large-scale behaviors. For example, methods developed to
indirectly assess exposure to media smoking and drinking (Sargent, Worth, Beach, Gerrard, &
Heatherton, 2008) could be combined with neural data specified as either a mediator or mod-
erator of key behavioral outcomes of interest (e.g., smoking initiation). Thoughtful selection
of subsets of participants in the context of related larger-scale representative studies can also
maximize the value of this type of work (Falk et al., 2013) to both communication science and
neuroscience. In parallel with its advantages, however, the brain-as-predictor approach is also
often more labor intensive than typical brain mapping (because of the requirement to collect data
longitudinally).

Step Three: Using Neural Data as Direct Predictors, Mediators or Moderators

In the third step of the brain-as-predictor approach, neural, physiological, or behavioral data are
combined in statistical models that specify the brain as a direct predictor, mediator or moderator
of relevant outcomes. Convergent validity between neural data and other measures (e.g., self-
report survey results, other biological measures) can help establish links between measures that
are theoretically predicted to overlap. In parallel, direct comparison between variance explained
by neural data and other data can establish the degree to which the brain adds value by explaining
variance in key outcomes that are difficult to predict otherwise.

From a practical standpoint, neural measures can be conceptualized in a similar manner to
other manipulated or individual difference predictor variables in the social and behavioral sci-
ences. For example, parameter estimates of neural activity from a priori specified regions of
interest during a target psychological task can be extracted, resulting in one summary value
representing average activity within each specified region, during key task conditions, for each
participant. Similar summary measures can be constructed relevant to structural features of the
brain (e.g., grey-matter volume in specific regions of interest) thought to reflect longer-term
life circumstances and biological factors such as genes, functional, and structural connectivity
between different neural regions that may alter the way that cognitive processes unfold and relate
to one another and so forth.

USING THE BRAIN-AS-PREDICTOR APPROACH TO TEST THEORIES IN
COMMUNICATION SCIENCE

Successful execution of the three steps above allows testing of theoretical relationships between
neurocognitive processes and outcomes. Below, we provide selected examples of how the brain-
as-predictor approach can help address theoretical debates and potentially build knowledge
relevant to long-standing questions in communication science. Of course, these examples are
only a few of many possible applications.
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40 E. B. FALK ET AL.

What Are The Precursors of Message-Driven Behavior Change?

As described in several examples above, the brain-as-predictor approach has been most widely
applied to studies of message-driven health behavior change. Well-established theories of persua-
sion and behavior change have focused heavily on reasoning and cognitive beliefs as precursors of
message-consistent behavior change (Ajzen & Fishbein, 2005; Petty, Priester, & Brinol, 2002).
Several recent brain-as-predictor studies extend these theories by highlighting a central role of
neural activity within brain regions such as the MPFC, implicated in self-related processing
(Denny, Kober, Wager, & Ochsner, 2012; Lieberman, 2010) and subjective value computation
(Bartra, McGuire, & Kable, 2013). As introduced above, at the individual level, Falk and col-
leagues (2010) found that neural responses within MPFC—to sunscreen PSAs predicted 21% of
the variance in sunscreen behavior change in the week following exposure to the PSAs, above
and beyond changes in participants’ self-reports of attitudes toward sunscreen use and intentions
to increase their sunscreen use.

In follow up work described above, the team found that neural responses within MPFC
explained smokers’ reductions in smoking behavior following exposure to anti-smoking PSAs,
above and beyond those participants self-reported intentions, self-efficacy, and ability to relate to
the PSAs (Falk et al., 2011). Furthermore, as described above, the team specifically localized the
effects to sub-regions of MPFC implicated in self-related processing and valuation, and demon-
strated that the effects were specific to activity during the PSAs and not individual differences in
general reactivity within MPFC (Cooper et al., in press). In addressing how these neural findings
can translate to message design, as described above, MPFC activity can be increased by inter-
vention components that increase self-related processing, such as message tailoring (Chua et al.,
2011). Recent studies described above also suggest that neural data may be useful in identifying
messages that are later most effective in producing population level behavior change, despite not
being identified through participant self-reports (e.g., Falk et al., 2012; under review).

Taken together, data linking MPFC responses to real-world outcomes have strengthened our
understanding of one pathway through which information from the media may interact with psy-
chological processes to influence behavior– the form of self-related processing and valuation
captured by MPFC are peripherally treated by current persuasion theories, but not given central
importance. These studies have also begun to demonstrate how MPFC activity can be altered
to increase the effectiveness of interventions. These data highlight two benefits to the brain-as-
predictor approach in the study of media effects—the ability to predict variance beyond what is
explained by certain self-report measures and evidence supporting links between key psychologi-
cal mechanisms stimulated by message exposure (e.g., self-related processing and valuation) and
prediction of key behavioral outcomes.

Extending the brain-as-predictor approach to further integrate with theories of persuasion,
Weber and colleagues (in press) examined neural responses to anti-drug messages in high and low
drug-risk individuals. Combining insights from the elaboration likelihood model (ELM; Petty &
Cacioppo, 1986), the activation model of information exposure (AMIE; Donohew, Palmgreen,
& Duncan, 1980), and the limited capacity model of motivated mediated message processing
(LC4MP; Lang 2009), Weber and colleagues manipulated the argument strength and message
sensation value (MSV) of anti-drug messages. They observed an interaction between argument
strength and message sensation value in predicting low-risk participants’ effectiveness ratings;
however, high-risk participants consistently rated messages as ineffective regardless of content
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NEURAL PREDICTION OF COMMUNICATION OUTCOMES 41

(consistent with counterarguing). Despite the lack of variability (and hence predictive capacity)
in the high risk participants’ self-reports, the team did observe variability in neural processes
likely associated with executive function and social cognition (among other functions) that were
not apparent from the high-risk participants’ self-reports. These neural data went on to predict the
effectiveness ratings for the target PSAs in new independent samples. Thus, although defensive
processes seem to have diminished the signal apparent in high risk-participants’ self-reports of
message effectiveness, their neural data provided insight into processes that were not captured
by self-reports of effectiveness. These insights can complement existing persuasion theories by
indirectly revealing ways that MSV and argument strength affect high and low risk participants’
processing of anti-drug messages.

How Do Voters Process Political Information During a Campaign?

Although most widely applied to date in studies of health behavior change, the brain-as-predictor
approach could also help address a number of different questions related to political communica-
tion research. As one example, during the course of a political campaign, voters are exposed to
different types of issue information about the candidates running for office. Historically, public
opinion researchers generally found that many citizens cannot recall the issue positions of candi-
dates and that issue positions rarely shaped votes or judgments (Lazarsfeld, Berelson, & Hazel,
1944; Berelson, Lazarsfeld, & McPhee, 1954; Campbell et al., 1964; Converse, 1964). These find-
ings generated the conclusions that citizens do relatively poorly when choosing candidates whose
issue positions best reflect their own beliefs and that campaigns exert “minimal effects” on vot-
ing behavior. In recent years, however, researchers have begun to consider whether citizens must
remember and use previously learned issue position information from media and other sources
in order to vote for the candidates whose policy stances best reflect their beliefs. According
to one particularly influential claim, advanced by Lodge and colleagues via their theory of on-
line processing, they do not. Their account theorized that voters can extract affective/emotional
information about candidates as they learn about them and incorporate this information into
an accumulated affective tally—a form of running average specific to that candidate. By the
time ballots are cast, voters might have forgotten the candidates’ specific issue positions; yet
earlier affective responses to actual issue information can still influence their candidate selec-
tions through the cumulative affective/emotional tally (Lodge, McGraw, & Stroh, 1989; Lodge,
Steenbergen, & Brau 1995; also see Hastie & Park, 1986).

One study (Coronel et al., 2012) conducted a unique and powerful test of this claim using
a different brain-based method, the use of brain-damaged patients to identify causal pathways
between brain-function in response to communication inputs and voter behavior. More specif-
ically, they tested whether explicit recall of information following exposure to messages about
candidate issue positions was necessary by comparing individuals with profound amnesia caused
by specific brain damage (i.e., to the hippocampus), whose severe memory impairments prevent
them from remembering specific issue information associated with any particular candidate (but
who can still form emotional memories), and healthy control participants. If individuals can con-
sistently vote for the candidates with political views most like their own, despite not explicitly
remembering specific issue information, this implies that citizens can store information (e.g.,
from the media environment) in ways that are not reflected by self-report instruments (i.e., overt
measures of recall), but nonetheless may have profound effects on political decisions.
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42 E. B. FALK ET AL.

The team experimentally manipulated exposure to relevant information through messages
about fictitious political candidates, and then assessed whether amnesic patients and healthy con-
trols could vote for candidates whose issue positions come closest to their own political views
after (Coronel et al., 2012). The researchers found that the amnesic patients did vote for can-
didates whose issues positions were closest at high levels commensurate with healthy controls,
suggesting that sound voting decisions do not require recall or recognition of previously learned
associations between candidates and their issue positions.

Normal voters, of course, are likely to use a combination of issue information and emotional
memories. Indeed, one line of inquiry in the fields of political communication and public opin-
ion attempt to determine the conditions under which memories for specific issue information or
the affective tally are more likely to influence voting decisions (Kim & Garrett, 2012; Mitchell,
2012; Redlawsk, 2001). Follow-up research employing neuroimaging methods in healthy pop-
ulations could contribute to this line of work by examining the extent to which neural activity
from regions associated with these different forms of learning and memory processes (e.g., hip-
pocampus, amygdala) are a better predictor of political attitudes or behaviors during candidate
evaluation under different circumstances.

What Psychological Processes Underlie the Effects Of Media Violence on Aggression?

Given that the brain-as-predictor approach as currently conceptualized is relatively new, there are
myriad areas that have not yet been examined, but might be fruitfully explored in the broader
landscape of communication research. For example, the brain-as-predictor approach might be
used to address questions such as: Are effects of media violence on aggression driven more by
differences in threat reactivity or emotion regulation in response to violent media (i.e., are media-
violence induced aggression and/or stress responses driven more by alteration in bottom up or
top down processing)? Preliminary research has mapped neural regions associated with exposure
to media violence (Weber, Ritterfeld, & Mathiak, 2006) and noted that exposure to violent video
games is associated with decreased activity in prefrontal cognitive control regions during response
inhibition (Hummer et al., 2010), but have not yet linked neural activity within these regions to
subsequent aggressive behavior or violence outside of the scanner.

One way to approach this question would be to specify neural activity in brain systems asso-
ciated with fast emotional responses to threats (e.g., the amygdala) and emotion regulation (e.g.,
LPFC) as mediators of the relationship between exposure to media violence and subsequent
aggressive behavior (measured through behavioral observation) and/or stress responses (mea-
sured physiologically). In such a study, participants could be randomly assigned to exposure to
violent and non-violent media as their neural activity is recorded. Following the scanner session,
participants could encounter an opportunity to engage in aggression. If the relationship between
media violence and aggression (and/or stress) were mediated solely by bottom up processes ver-
sus additional top down regulation, this might suggest different interventions to mitigate negative
effects of media violence. Such an approach could also inform our understanding of pathways to
desensitization (i.e., is desensitization a product of diminished threat reactivity or of augmented
ability to regulate automatic threat responses).

Neural activity within regions of interest implicated in top-down or bottom-up processing
could also be hypothesized as individual difference moderators of the effects of media violence
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on later aggressive behavior. For example, it might be of interest to test whether individual dif-
ferences in sensitivity of the brain’s reward system, cognitive control system, or connectivity
between the two, in response to violent media moderate the relationship between exposure to the
violent media and individual differences in real-world aggression, stress responses, etc., following
the scan.

NEURAL ACTIVITY AS A COMPLEMENT TO OTHER MEASURES

The examples above illustrate a range of ways in which neural data can complement and extend
what is learned from explicit self-reports (e.g., of reactions to health messages, of recall following
exposure to political communications). More generally, the brain-as-predictor approach builds on
a foundation of behavioral research that has relied not only on self-report surveys and experimen-
tal outcomes but also implicit measures to understand a wide range of communication processes.
Implicit and indirect behavioral measures (e.g., response times), however, usually require inter-
rupting or changing the natural flow of cognition—such measures typically apply time pressure or
otherwise constrain deliberative thought (Fazio & Olson, 2003; Greenwald, Poehlman, Uhlmann,
& Banaji, 2009). Hence, though implicit measures are well-suited to assess concept accessibil-
ity and evaluations (Hefner, Rothmund, Klimmt, & Gollwitzer, 2011), they do not reveal the
underlying mechanisms through which concepts and evaluations are formed and change. By con-
trast, neural measures can record both explicit and implicit processes throughout the brain as
they unfold. Thus, although neuroimaging methods can be more costly to administer in com-
parison to other measures (e.g., reaction time measures, surveys), neural data can also provide
complementary information that would be difficult to obtain otherwise.

The brain-as-predictor approach also builds on a rich history in communication science and
psychology of using biological measurement tools such as peripheral physiology, facial coding
and other measures to operationalize psychological processes such as attention and arousal. This
work has made substantial advances in characterizing media attributes and qualities of interper-
sonal communication that produce such physiological reactions, but do not capture fine-grained
cognitive processes responsible for these reactions (for a review, see Lang, Potter, & Bolls,
2009; Cacioppo, Tassinary, & Berntson, 2007). Neural measures can complement these mea-
surement tools. With some caveats (discussed below), neural data can distinguish between a wide
range of underlying cognitive and affective processes, and hence can complement other bio-
logical measures (which are related to, but not synonymous with brain function and may offer
less specificity in underlying neurocognitive processes as they unfold). Integrating physiological
variables as proximal outcomes or additional mediators or moderators in models employing a
brain-as-predictor framework will further help to open the black box of mechanisms underlying
communication processes.

STRENGTHS, LIMITATIONS AND PRACTICAL NOTES

The brain-as-predictor approach is a relatively new and promising approach to theoretical and
practical questions in communication science. As with any method and associated measurement
model, however, the brain-as-predictor approach has strengths and limitations. Below, we outline
theoretical and practical issues that research teams will need to consider when employing this
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approach (additional considerations, and a brief checklist for authors, reviewers and editors, can
be found in the Appendix and throughout the manuscript above).

Reverse Inference

The issue of reverse inference in fMRI research is explained in detail by Weber and colleagues
(this issue). In brief, there is typically a one-to-many relationship between activity in any given
neural region and the psychological functions it implements. As such, inferring specific psy-
chological processes from observed brain activity must be qualified with the caveats outlined
by Weber and colleagues. Importantly for the brain-as-predictor approach, however, researchers
have some control over the strength of inferences that are possible in the choices made during
design. As noted by Poldrack (2006), two ways to improve confidence in reverse inference are
to “increase the selectivity of response in the brain region of interest, or increase the prior prob-
ability of the cognitive process in question” (p. 5). Although the experimenter cannot typically
alter the physiological selectivity of a brain region (i.e., the range of stimuli that a brain region
responds to/ range of psychological processes that it supports; c.f., Jackson-Hanen, Tompary,
deBettencourt, & Turke-Brown, 2013), selectivity in the model can be increased by choosing
more targeted brain regions spatially (i.e., smaller regions of interest; see section on functional
ROIs), and by examining networks of regions that together may be more selective for a given
psychological process than a single region. As discussed above, regions of interest can also be
made more selective by using independent functional localizer tasks to identify regions of interest
that are associated with specific psychological processes and then examining how these regions
respond during a target task. Especially in brain regions that cover large anatomical bounds, func-
tional localizers often identify more targeted sub-regions. Likewise, meta-analyses of specific
neurocognitive processes can similarly produce more targeted regions of interest. In addition, the
use of databases such as the BrainMap database and Neurosynth can allow researchers to estimate
selectivity, and hence provide information about the strength of the inference.

Costs

Neuroimaging methods, such as fMRI, are more financially costly to administer per participant
than other measures (e.g., self-report questionnaires, implicit reaction time measures). However,
the total cost of acquiring a neuroimaging dataset may be similar to some methods that are
familiar to communication scientists (e.g., running a large-scale, longitudinal or nationally rep-
resentative survey, collecting data in clinics), which likewise require considerable overhead for
data acquisition and specialized training for analysis. Also common to methods across the dis-
cipline, substantial investment of time and energy are needed to gain the requisite expertise to
use the measures intelligently. Both types of cost issues (financial and expertise) can be mitigated
through collaborations across disciplines. For example, drawing relatively small sub-samples of
participants from larger-scale survey samples which have been specifically designed for repre-
sentativeness in relation to a target larger-scale population has considerable benefits for both
generalizability of the neuroscience findings and for the ability to gain a deeper understanding
of mechanisms that may contribute to processes observed in the larger population (for a more
complete review of methods and considerations for linking smaller neuroimaging samples and
larger-scale population outcomes, see: Falk, Hyde, Mitchell, et al., 2013).
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Practical Notes

Choice of Imaging Modality

Although many recent examples of the brain-as-predictor approach have relied on fMRI as a
primary method for acquiring brain data, many different neuroimaging technologies are amenable
to the brain-as-predictor approach, depending on what is called for by the research question;
for example, fMRI offers excellent, uniform spatial resolution of the human brain (i.e., allows
one to ask where in the brain cognitive processes are occurring) whereas other brain imaging
techniques (e.g., event related potentials; ERPs) offer excellent temporal resolution (i.e., one can
ask when or in what order do specific cognitive processes unfold). Ultimately, combined use
of neural measures with other tools in the communication research toolbox, such as self-report
instruments, implicit behavioral measures, and other psychophysiological and broader biological
approaches to understanding human thoughts, feelings and behaviors promises to provide a more
comprehensive account of communication processes given the different strengths provided by
each method.

Statistical Methods Beyond the GLM

It should also be noted that although many of the examples reviewed specified neural predic-
tors in regression models, the brain-as-predictor framework can also be used outside the confines
of the general linear model (GLM). In particular, prediction of outcomes from mean levels of
activity in single brain regions of interest may ignore substantial amounts of information about
the interplay of networks of regions and spatial and temporal patterns of activity within those
regions. Techniques beyond the GLM may be particularly well suited to circumventing these
limitations.

For example, Bayesian inference may be preferable when mental processes are best oper-
ationalized through brain networks of interest (versus individual regions of interest). Linear
regression models that use multiple neural regions as independent variables to predict behavioral
outcomes often suffer from multicollinearity. Thus, under the GLM framework, the researcher
must examine each neural region in a separate regression model or collapse them into a single
variable by averaging over activity across the network (with both approaches losing information
about their joint contributions, and in the former case, needing to account for multiple com-
parisons). However, Bayesian statisticians have developed clustering techniques that can allow
researchers to explore multiple independent regions of interest in a brain-as-predictor model with-
out imposing a priori constraints as to which regions cluster together to form a network (Curtis &
Ghosh, 2011). Thus, a Bayesian approach can allow researchers using a brain-as-predictor frame-
work to examine multiple neural regions or networks within the same predictive model, allowing
for greater accuracy when examining the underlying processes that drive behavior. Finally, an
additional benefit of using Bayesian inference over traditional GLM approaches within a brain-
as-predictor framework is the ability to make true probability statements about the relationship
between neural predictors and outcomes of interest (Gelman, Carlin, Stern, & Rubin, 2003).

Similarly, the past decade has seen substantial advances in machine learning and multivariate
techniques for further exploring patterns of neural activity, especially fMRI data, that go beyond
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simple averages over an entire region of interest as typically done in the GLM (Bandettini, 2009;
Mur, Bandettini, & Kriegeskorte, 2009; Norman, Polyn, Detre, & Haxby, 2006), as well as exam-
ining shared patterns across individuals in response to more naturalistic stimuli (Hasson et al.,
2012). More detail on these multivariate pattern analysis and intersubject correlation methods
is explored by Weber and colleagues (this volume). Such approaches could be used even more
extensively in combination with communication-relevant behaviors and theories.

Substantial gains have also been made with respect to cutting edge techniques that now allow
for real time feedback based on neural activity (Sulzer et al., 2013). Such techniques could be used
to tailor communication interventions, for example by providing researchers feedback about neu-
ral responses to mediated communications; in response, researchers could alter the course of the
narrative, production elements, or other key features based on an individual’s neural responses.
In aggregate, such information might also reveal unexpected combinations/permutations of com-
munication features that are powerful across individuals, but not predicted by existing theories.
Likewise, provision of real time feedback to patients in response to different types of inputs
(e.g., smokers’ responses to smoking imagery) could suggest new clinical treatments. This type
of feedback could be complemented by stimulation of specific brain regions to increase or tem-
porarily block neural function (Antal, Nitsche, & Paulus, 2006; Camus et al., 2009; Fregni et al.,
2005; Lang et al., 2005; Ruff, Driver, & Bestmann, 2009). Methods that allow temporary up
and down regulation of targeted neural activity will also boost confidence in the causal pathways
hypothesized, as well as real-world impact of these technologies for communication questions.

Finally, computational models of cognition may also help expand the brain-as-predictor frame-
work. Computational models of cognition broadly refer to a set of computationally driven models
of human mental processes that attempt to represent or act like cognitive systems. These systems
can then be used to model behavior based on the structural properties of the neural system. For
example, cognitive architectures that describe basic cognitive and perceptual processes and their
links to neural function can be used to test hypotheses about more basic neural components
involved in processing complex tasks, such as exposure to mass media messages (for reviews
of one set of cognitive architectures, see Borst, Taatgen, & Anderson, in press; Borst, Taatgen,
& Rijn, in press; Lehman, Laird, & Rosenbloom, 2006). Cognitive architectures and other com-
putational models of cognition can be used to model communication or psychological theories
to predict behavioral outcomes, to the extent that such relationships have been previously estab-
lished (Borst, Taatgen, & Anderson, in press; Borst, Taatgen, & Rijn, in press; Lehman, Laird,
& Rosenbloom, 2006). The use of cognitive models to link neural processes and behavioral out-
comes is one particularly promising, but still underdeveloped, avenue that should be pursued to
optimally leverage the brain-as-predictor approach in communication science.

CONCLUSION

Communication scholars can leverage advances in neuroscientific measurement tools and the
accumulated knowledge on the neural correlates of many basic social, cognitive and affective
processes to predict psychological and behavioral outcomes in response to communication within
and beyond the laboratory. This approach has considerable potential for testing existing theories
or generating new ones. Neuroimaging technologies offer the ability to monitor activity associ-
ated with multiple mental processes, in real time as they unfold, without the need to interrupt
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NEURAL PREDICTION OF COMMUNICATION OUTCOMES 47

the target task to request self-reports or to constrain controlled processing. A small but grow-
ing body of research in communication and psychology demonstrates that neural variables can
predict additional variance in both individual and population level outcomes. This article out-
lines steps through which a broader range of key questions in communication science might be
informed using models that specify neural predictors and relevant psychological or behavioral
outcomes. As with any set of methods, the neuroscience methods highlighted here carry sig-
nificant strengths and limitations; thus, collaborations between neuroscientists and those with
other complementary training within communication science will result in advances that are not
possible for either discipline alone.
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APPENDIX: NEURAL PREDICTION OF COMMUNICATION-RELEVANT
OUTCOMES— CHECKLIST ITEMS FOR REPORTING BRAIN-AS-PREDICTOR

STUDIES

In addition to the considerations that apply to reporting any neuroscience investigation (outlined
in resources at the end of this checklist and other manuscripts within this volume), and in addition
to the same standards that apply to reporting longitudinally collected behavioral data in commu-
nication science (e.g., from surveys, behavioral observation, or whatever means you are using to
collect your DV), the following considerations should be noted during the study design phase,
and explicitly treated when you report a brain-as-predictor study:
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Evaluation Criteria

For any neuroimaging modality

Conceptualization of position of neural variables within your model (choose at least one from below)

As primary predictor of a communication behavior or outcome

As mediator of the relationship between communication inputs and behavioral,
psychological or physiological outcomes

As moderator of the relationship between communication inputs and behavioral,
psychological or physiological outcomes

Conceptualization of psychological role of neural variables (choose at least one from below)

As a state measure (in relation to manipulated context)

As a trait measure (of stable individual difference)
Treatment of reverse inference in discussion

Authors are clear/explicit about which relationships between psychological constructs and
neural function are directly observed2

Authors are clear which are speculative/ based on reverse inference3

Statistical and measurement considerations

Imaging modality chosen is well justified

Authors specify strengths and limits of modality chosen

Statistical methods to link neural predictor with hypothesized outcomes are clearly
specified4

Statistical assumptions inherent or required for method are detailed

Steps taken (if any) to assess the construct validity of your neural measure (e.g., reliability,
convergent validity, discriminant validity, etc.) are specified

For fMRI, fNIRS and other methods that employ spatially defined ROIs

Method for identifying ROIs is clearly defined (choose one or more from below)

Anatomically based on prior literature

Report how the ROI was constructed

Rationale re: anatomical boundaries

Atlases used (if any)

Functionally

Based on a prior independent dataset

(Continued)

2As in the case of mediation when neural activity is manipulated using a psychological task and used to predict
another specific psychological, psychophysiological or behavioral outcome.

3e.g., reverse inferences made about the psychological function of your regions of interest based on past work that
has found associations between a psychological process and your region of interest.

4e.g., GLM, Non-parametric, Machine learning based classification.
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TABLE A1
(Continued)

Based on a meta-analysis

Curated/ Peer reviewed

Automated (e.g., Neurosynth)

ROIs chosen are as selective as possible5

For ERP and methods that focus on a combination of spatial and temporal effects

Authors detail how ERP component focused on is selected and measured6

How the ERP waveform was measured (peak amplitude, mean amplitude, etc.)

Why a time window was chosen

Why a given set of electrodes were chosen for analyses.

Authors have accounted for possible effects of the neuroimaging environment (choose one or more below)

Demonstrate that behavioral relationships between psychological manipulations and
observed outcomes are not affected by the neuroimaging environment

Demonstrating similar effects between behavioral pilot data collected outside of the
neuroimaging context and behavioral data collected in the neuroimaging study

Note limitations of neuroimaging environment

Note: We build on the advice offered by Weber and colleagues (this volume): “This checklist is designed to assist
authors, reviewers and editors in the process of reporting and evaluating an fMRI study. No checklist can include an
exhaustive list of requirements for every study and not every requirement on this checklist may be necessary for all
[brain-as-predictor] fMRI studies. Therefore, we invite fellow researchers to extend or modify our checklist. With this in
mind, studies that do not include one or two of the requirements should not necessarily be viewed as invalid or otherwise
flawed. Instead, missing requirements should prompt requests for clarification.

Additional Resources for Communication Scholars, Reviewers and Editors

The following resources contain more general guidelines and advice for reporting three poten-
tially useful forms of neuroimaging data. For additional information about data acquisition
and methodological notes, readers may also be interested in Methods in Social Neuroscience
(Harmon-Jones and Beer, 2009).

Guidelines for reporting fMRI data (Poldrack et al., 2008)
This resource provides an excellent overview of methodological choices that go into designing an
fMRI study that should be reported in write ups of fMRI studies. An addendum to this checklist

5As noted in text, although the experimenter cannot typically alter the physiological selectivity of a brain region
(i.e., the range of stimuli that a brain region responds to/ range of psychological processes that it supports), the use of
meta-analyses, functional localizer tasks, and focus on networks of regions (instead of single regions) can all help increase
selectivity. Databases such as neurosynth.org can also help estimate the selectivity of the brain region in question for the
psychological process in question; use this information to adjust the strength of claims made in reporting your findings.

6More details in resources specified below.
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was proposed by Falk, Hyde, Mitchell and colleagues (2013) to better allow neuroimaging
research to link to population level outcomes.

Checklist for reporting ERP data (Picton et al., 2000)
This article presents guidelines for reporting standards advocated by the Society for
Psychophysiological Research.

Resources for reporting fNIRS data
An overview of current and future uses of fNIRS (and a short discussion of lack of standard
methods) - (Cutini & Brigadoi, 2014)
A review of methods for continuous wave-fNIRS - (Scholkmann et al., 2014)
An overview of statistical analysis of fNIRS data - (Tak & Ye, 2014)
A history and overview of current practices in fNIRS - (Ferrari & Quaresima, 2012)
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